The Transcription Factor Mrr1p Controls Expression of the MDR1 Efflux Pump and Mediates Multidrug Resistance in Candida albicans

نویسندگان

  • Joachim Morschhäuser
  • Katherine S Barker
  • Teresa T Liu
  • Julia Blaß-Warmuth
  • Ramin Homayouni
  • P. David Rogers
چکیده

Constitutive overexpression of the MDR1 (multidrug resistance) gene, which encodes a multidrug efflux pump of the major facilitator superfamily, is a frequent cause of resistance to fluconazole and other toxic compounds in clinical Candida albicans strains, but the mechanism of MDR1 upregulation has not been resolved. By genome-wide gene expression analysis we have identified a zinc cluster transcription factor, designated as MRR1 (multidrug resistance regulator), that was coordinately upregulated with MDR1 in drug-resistant, clinical C. albicans isolates. Inactivation of MRR1 in two such drug-resistant isolates abolished both MDR1 expression and multidrug resistance. Sequence analysis of the MRR1 alleles of two matched drug-sensitive and drug-resistant C. albicans isolate pairs showed that the resistant isolates had become homozygous for MRR1 alleles that contained single nucleotide substitutions, resulting in a P683S exchange in one isolate and a G997V substitution in the other isolate. Introduction of these mutated alleles into a drug-susceptible C. albicans strain resulted in constitutive MDR1 overexpression and multidrug resistance. By comparing the transcriptional profiles of drug-resistant C. albicans isolates and mrr1Delta mutants derived from them and of C. albicans strains carrying wild-type and mutated MRR1 alleles, we defined the target genes that are controlled by Mrr1p. Many of the Mrr1p target genes encode oxidoreductases, whose upregulation in fluconazole-resistant isolates may help to prevent cell damage resulting from the generation of toxic molecules in the presence of fluconazole and thereby contribute to drug resistance. The identification of MRR1 as the central regulator of the MDR1 efflux pump and the elucidation of the mutations that have occurred in fluconazole-resistant, clinical C. albicans isolates and result in constitutive activity of this trancription factor provide detailed insights into the molecular basis of multidrug resistance in this important human fungal pathogen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proteomic analysis of Mrr1p- and Tac1p-associated differential protein expression in azole-resistant clinical isolates of Candida albicans.

Azole resistance in Candida albicans is frequently caused by the overexpression of multi-drug efflux pump genes MDR1, CDR1, and CDR2 due to gain-of-function mutations in the zinc cluster transcription factors Mrr1p and Tac1p. In this study, we performed a comparative proteomic analysis to identify proteins whose expression level is influenced by these transcription factors. Both 2-DE and PMF we...

متن کامل

SAGA/ADA complex subunit Ada2 is required for Cap1- but not Mrr1-mediated upregulation of the Candida albicans multidrug efflux pump MDR1.

Overexpression of the multidrug efflux pump MDR1 is one mechanism by which the pathogenic yeast Candida albicans develops resistance to the antifungal drug fluconazole. The constitutive upregulation of MDR1 in fluconazole-resistant, clinical C. albicans isolates is caused by gain-of-function mutations in the zinc cluster transcription factor Mrr1. It has been suggested that Mrr1 activates MDR1 ...

متن کامل

Functional dissection of a Candida albicans zinc cluster transcription factor, the multidrug resistance regulator Mrr1.

The overexpression of the MDR1 gene, which encodes a multidrug efflux pump of the major facilitator superfamily, is a frequent cause of resistance to the widely used antimycotic agent fluconazole and other toxic compounds in the pathogenic yeast Candida albicans. The zinc cluster transcription factor Mrr1 controls MDR1 expression in response to inducing chemicals, and gain-of-function mutations...

متن کامل

Regulation of efflux pump expression and drug resistance by the transcription factors Mrr1, Upc2, and Cap1 in Candida albicans.

Constitutive overexpression of the Mdr1 efflux pump is an important mechanism of acquired drug resistance in the yeast Candida albicans. The zinc cluster transcription factor Mrr1 is a central regulator of MDR1 expression, but other transcription factors have also been implicated in MDR1 regulation. To better understand how MDR1-mediated drug resistance is achieved in this fungal pathogen, we s...

متن کامل

An acquired mechanism of antifungal drug resistance simultaneously enables Candida albicans to escape from intrinsic host defenses

The opportunistic fungal pathogen Candida albicans frequently produces genetically altered variants to adapt to environmental changes and new host niches in the course of its life-long association with the human host. Gain-of-function mutations in zinc cluster transcription factors, which result in the constitutive upregulation of their target genes, are a common cause of acquired resistance to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Pathogens

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2007